Oblak Znanja

  • Home
  • Novosti
  • Učionica
    • Informatika 5
    • Informatika 6
    • Informatika 7
    • Informatika 8
    • Logo jezik
    • WordPress
    • Microsoft Office
  • Vodiči
    • Online vodiči
    • Kratki savjeti
    • Korisne aplikacije
    • Društvene mreže
    • Multimedija
    • Zanimljivosti
✕

Nije sve potrebno LLM: okvir za procjenu kada AI ima smisla

Novosti

Nije sve potrebno LLM: okvir za procjenu kada AI ima smisla

Tomšić Damjan 4. svibnja 2025


Pridružite se našim dnevnim i tjednim biltenima za najnovija ažuriranja i ekskluzivni sadržaj na vodećim AI pokrivenosti. Saznati više


Pitanje: Koji bi proizvod trebao koristiti strojno učenje (ML)?
Odgovor voditelja projekta: Da.

Šale na stranu, pojava generativnog AI -a je usmjerila naše razumijevanje onoga što slučajevi upotrebe najbolje podvrgavaju ML -u. Povijesno smo uvijek iskoristili ML za ponovljive, prediktivne obrasce u iskustvima kupca, ali sada je moguće iskoristiti oblik ML -a čak i bez čitavog skupa podataka o treningu.

Unatoč tome, odgovor na pitanje “Što kupcu treba zahtijeva AI rješenje?” Još uvijek nije uvijek “da”. Veliki jezični modeli (LLMS) i dalje mogu za neke biti zabranjeno skupi, a kao i kod svih ML modela, LLM -ovi nisu uvijek točni. Uvijek će biti slučajeva upotrebe u kojima korištenje implementacije ML -a nije pravi put prema naprijed. Kako mi kao voditelji AI projekata procjenjujemo potrebe naših kupaca za implementaciju AI?

Ključna razmatranja koja pomažu u donošenju ove odluke uključuju:

  1. Ulazi i izlazi potrebni za ispunjavanje potreba vašeg kupca: Kupac pruža unos vašem proizvodu, a izlaz pruža vaš proizvod. Dakle, za popisu za reprodukciju generiranog Spotify ML (izlaz), unosi bi mogli uključivati ​​preferencije kupaca i pjesme, umjetnike i glazbeni žanr.
  2. Kombinacije ulaza i izlaza: Potrebe kupca mogu se razlikovati ovisno o tome žele li isti ili drugačiji izlaz za isti ili drugačiji unos. Što više permutacija i kombinacija moramo ponoviti za ulaze i izlaze, na skali, to se više moramo obratiti na ML u odnosu na sustave temeljene na pravilima.
  3. Uzorci u ulazima i izlazima: Obrasci u potrebnim kombinacijama ulaza ili izlaza pomažu vam da odlučite koju vrstu ML modela trebate koristiti za implementaciju. Ako postoje obrasci za kombinacije ulaza i izlaza (poput pregleda anegdota kupaca kako bi se dobili ocjenu osjećaja), razmislite o nadzoru ili polu-nadređenim ML modelima preko LLMS-a jer bi mogli biti isplativiji.
  4. Trošak i preciznost: Pozivi LLM-a nisu uvijek jeftini u mjerilu, a izlazi nisu uvijek precizni/točni, unatoč finom podešavanju i brzom inženjeringu. Ponekad vam je bolje s nadziranim modelima za neuronske mreže koji mogu klasificirati ulaz pomoću fiksnog skupa naljepnica ili čak sustava temeljenih na pravilima, umjesto da koristite LLM.

Sastavio sam brzu tablicu u nastavku, saževši gore navedena razmatranja, kako bih pomogao menadžerima projekata da procijene potrebe svojih kupaca i utvrde li se implementacija ML -a čini kao pravi put naprijed.

Vrsta potrebe kupacaPrimjerML implementacija (da/ne/ovisi)Vrsta ML implementacije
Ponavljajući zadaci gdje je kupcu potreban isti izlaz za isti ulazDodajte moju e -poštu putem različitih obrazaca na mrežiNeStvaranje sustava temeljenog na pravilima više je nego dovoljno da vam pomogne u vašim izlazima
Ponavljajući se zadaci gdje kupcu trebaju različiti izlazi za isti ulazKupac je u “Discovery Mode” i očekuje novo iskustvo kada poduzmu istu radnju (poput potpisivanja na račun):

– Generirajte novo umjetničko djelo po kliku

–Zaleđa (Sjećate se toga?) Otkrivanje novog ugla Interneta slučajnim pretraživanjem

Da–Image Generation LLMS

– Algoritmi za rješavanje (suradničko filtriranje)

Ponavljajući se zadaci u kojima je kupcu potreban isti/sličan izlaz za različite ulaze– Eseji za dogradnju
– Generirajući teme iz povratnih informacija kupaca
OvisiAko je broj ulaznih i izlaznih kombinacija dovoljno jednostavan, determinirani, sustav temeljen na pravilima i dalje može raditi za vas.

Međutim, ako počnete imati više kombinacija ulaza i izlaza, jer sustav temeljen na pravilima ne može učinkovito skalirati, razmislite o oslanjanju:

– Klasifikatori
–Topično modeliranje

Ali samo ako postoje obrasci za ove ulaze.

Ako uopće nema obrazaca, razmislite o iskorištavanju LLMS-a, ali samo za jednokratne scenarije (jer LLM-ovi nisu tako precizni kao nadzirani modeli).

Ponavljajući se zadaci gdje kupcu trebaju različiti izlazi za različite ulaze – Zapisivanje pitanja o korisničkoj podršci
-Pretraživanje
DaRijetko je naići na primjere gdje možete pružiti različite izlaze za različite ulaze na skali bez ML.

Jednostavno je previše permutacija da bi se implementacija utemeljena na pravilima učinkovito razmjera. Razmotriti:

-llms s generacijom koja je usmjerena na pretraživanje (RAG)
– Drveće stabla za proizvode poput pretraživanja

Neotkrivajući zadaci s različitim izlazimaPregled hotela/restoranaDaPre-llms, ova vrsta scenarija bila je teško postići bez modela koji su bili obučeni za određene zadatke, poput:

–Zarentne neuronske mreže (RNNS)
-Duge kratkoročne memorijske mreže (LSTMS) za predviđanje sljedeće riječi

LLM -ovi su odlično pogodni za ovu vrstu scenarija.

Dno crta: Nemojte koristiti svjetlosni sabl kada bi jednostavan par škara mogao učiniti trik. Procijenite potrebe svog kupca pomoću gornje matrice, uzimajući u obzir troškove implementacije i preciznost proizvodnje, za izgradnju točnih, ekonomičnih proizvoda na skali.

Sharanya Rao je voditeljica proizvoda FinTech grupe. Stajališta izražena u ovom članku su ona autora, a ne nužno i oni iz njihove tvrtke ili organizacije.

Dnevni uvidi u slučajeve poslovne uporabe s VB dnevno

Ako želite impresionirati svog šefa, VB Daily vas je pokrivao. Dajemo vam unutarnju lopaticu o tome što tvrtke rade s generativnim AI, od regulatornih pomaka do praktičnih razmještaja, tako da možete dijeliti uvide za maksimalni ROI.

Pročitajte našu politiku privatnosti

Hvala na pretplati. Pogledajte više VB biltena ovdje.

Došlo je do pogreške.



Web izvor

Povezani sadržaji

  • Najbolje ponude za telefon Amazon Prime Day 2025: Mojih 15 najdražih prodaja uoči listopada
  • Mint Mobile Prodaje 30-dnevno bez roaming paketa podataka za 5 dolaraMint Mobile Prodaje 30-dnevno bez roaming paketa podataka za 5 dolara
  • Plan Bijele kuće signalizira eru “Prvo otvoreno”-a poduzeća trebaju nove zaštitne ogradePlan Bijele kuće signalizira eru “Prvo otvoreno”-a poduzeća trebaju nove zaštitne ograde
  • Predloženo smanjenje proračuna NASA -a ‘desemično bi američko vodstvo u svemiru’Predloženo smanjenje proračuna NASA -a ‘desemično bi američko vodstvo u svemiru’
  • Obožavatelji Pokémon Go testiraju shemu mjesečnog nagrađivanja kažu da ćete morati potrošiti £500 za potpuno otključavanjeObožavatelji Pokémon Go testiraju shemu mjesečnog nagrađivanja kažu da ćete morati potrošiti £500 za potpuno otključavanje
  • Poolhouse prikupi 34 milijuna dolara za gamificirani bazen od tvorca TopgolfaPoolhouse prikupi 34 milijuna dolara za gamificirani bazen od tvorca Topgolfa

Previous Article

Zašto se balkonske solarne panele nisu skinule u SAD -u

Next Article

Škotske najudaljenije gradove i sela kako bi dobili nadogradnju gigabita

Posljednje objave

Njemačka država zamjenjuje Microsoft Exchange i Outlook e-poštom otvorenog koda

Samsung nudi 100 dolara trenutačne ponude novim korisnicima XR slušalica prije nego što je Upakiran

Google fotografije stvaranje kolaža dobiva velika poboljšanja

Google fotografije stvaranje kolaža dobiva velika poboljšanja

Novosti

  • Njemačka država zamjenjuje Microsoft Exchange i Outlook e-poštom otvorenog koda 15. listopada 2025
  • Samsung nudi 100 dolara trenutačne ponude novim korisnicima XR slušalica prije nego što je Upakiran 15. listopada 2025
  • Google fotografije stvaranje kolaža dobiva velika poboljšanja 14. listopada 2025
  • Assassin’s Creed Franchise olovo ostavlja Ubisoft nakon formiranja podružnice Tencent 14. listopada 2025
  • Sita otkriva prevlake za vlaknastim optičkim aerodromima 14. listopada 2025
  • Jezični modeli koji se samo usavršavaju postaju stvarnost s MIT-ovom ažuriranom tehnikom pečata 14. listopada 2025
  • Kako učiniti STEM smiješnim – i idi virusno radeći 14. listopada 2025
  • 10 Windows aplikacija otvorenog koda ne mogu živjeti – i svi su besplatni 14. listopada 2025
  • Isprobao sam pametne naočale s XMEMS zvučnicima i aktivnim hlađenjem – i puni su obećanja 13. listopada 2025
  • Moramo se približiti pokretanju Galaxy XR 13. listopada 2025

O nama

Oblak Znanja je blog edukativnog karaktera i namijenjen je svima koji žele unaprijediti svoje znanje iz područja računala i interneta.

Naš cilj je edukacija i pisanje zanimljivih objava kojima ćemo zajedno učiti i informirati se o svijetu informatike.

Na ovom blogu zabranjeno je svako kopiranje sadržaja bez dozvole autora.

Oblak Znanja

Oznake

besplatni powerpoint predlošci društvene mreže excel facebook firefox gmail google+ Google Chrome halloween halloween walpapers internet kartice linkedin profil linux microsoft Mozilla Firefox ms powerpoint oblak znanja office 2007 office savjeti online kupovina pick powerpoint powerpoint predložak powerpoint savjeti rastući niz savjet slike za radnu površinu spremanje datoteka strani jezik tipkovnicke kratice twitter twitter alati uređivanje slika wallpaper clock web preglednik windows windows 7 windows aplikacije windows vista word word 2007 word savjeti youtube savjeti youtube tipkovničke kratice