Oblak Znanja

  • Home
  • Novosti
  • Učionica
    • Informatika 5
    • Informatika 6
    • Informatika 7
    • Informatika 8
    • Logo jezik
    • WordPress
    • Microsoft Office
  • Vodiči
    • Online vodiči
    • Kratki savjeti
    • Korisne aplikacije
    • Društvene mreže
    • Multimedija
    • Zanimljivosti
✕

Nije sve potrebno LLM: okvir za procjenu kada AI ima smisla

Novosti

Nije sve potrebno LLM: okvir za procjenu kada AI ima smisla

Tomšić Damjan 4. svibnja 2025


Pridružite se našim dnevnim i tjednim biltenima za najnovija ažuriranja i ekskluzivni sadržaj na vodećim AI pokrivenosti. Saznati više


Pitanje: Koji bi proizvod trebao koristiti strojno učenje (ML)?
Odgovor voditelja projekta: Da.

Šale na stranu, pojava generativnog AI -a je usmjerila naše razumijevanje onoga što slučajevi upotrebe najbolje podvrgavaju ML -u. Povijesno smo uvijek iskoristili ML za ponovljive, prediktivne obrasce u iskustvima kupca, ali sada je moguće iskoristiti oblik ML -a čak i bez čitavog skupa podataka o treningu.

Unatoč tome, odgovor na pitanje “Što kupcu treba zahtijeva AI rješenje?” Još uvijek nije uvijek “da”. Veliki jezični modeli (LLMS) i dalje mogu za neke biti zabranjeno skupi, a kao i kod svih ML modela, LLM -ovi nisu uvijek točni. Uvijek će biti slučajeva upotrebe u kojima korištenje implementacije ML -a nije pravi put prema naprijed. Kako mi kao voditelji AI projekata procjenjujemo potrebe naših kupaca za implementaciju AI?

Ključna razmatranja koja pomažu u donošenju ove odluke uključuju:

  1. Ulazi i izlazi potrebni za ispunjavanje potreba vašeg kupca: Kupac pruža unos vašem proizvodu, a izlaz pruža vaš proizvod. Dakle, za popisu za reprodukciju generiranog Spotify ML (izlaz), unosi bi mogli uključivati ​​preferencije kupaca i pjesme, umjetnike i glazbeni žanr.
  2. Kombinacije ulaza i izlaza: Potrebe kupca mogu se razlikovati ovisno o tome žele li isti ili drugačiji izlaz za isti ili drugačiji unos. Što više permutacija i kombinacija moramo ponoviti za ulaze i izlaze, na skali, to se više moramo obratiti na ML u odnosu na sustave temeljene na pravilima.
  3. Uzorci u ulazima i izlazima: Obrasci u potrebnim kombinacijama ulaza ili izlaza pomažu vam da odlučite koju vrstu ML modela trebate koristiti za implementaciju. Ako postoje obrasci za kombinacije ulaza i izlaza (poput pregleda anegdota kupaca kako bi se dobili ocjenu osjećaja), razmislite o nadzoru ili polu-nadređenim ML modelima preko LLMS-a jer bi mogli biti isplativiji.
  4. Trošak i preciznost: Pozivi LLM-a nisu uvijek jeftini u mjerilu, a izlazi nisu uvijek precizni/točni, unatoč finom podešavanju i brzom inženjeringu. Ponekad vam je bolje s nadziranim modelima za neuronske mreže koji mogu klasificirati ulaz pomoću fiksnog skupa naljepnica ili čak sustava temeljenih na pravilima, umjesto da koristite LLM.

Sastavio sam brzu tablicu u nastavku, saževši gore navedena razmatranja, kako bih pomogao menadžerima projekata da procijene potrebe svojih kupaca i utvrde li se implementacija ML -a čini kao pravi put naprijed.

Vrsta potrebe kupacaPrimjerML implementacija (da/ne/ovisi)Vrsta ML implementacije
Ponavljajući zadaci gdje je kupcu potreban isti izlaz za isti ulazDodajte moju e -poštu putem različitih obrazaca na mrežiNeStvaranje sustava temeljenog na pravilima više je nego dovoljno da vam pomogne u vašim izlazima
Ponavljajući se zadaci gdje kupcu trebaju različiti izlazi za isti ulazKupac je u “Discovery Mode” i očekuje novo iskustvo kada poduzmu istu radnju (poput potpisivanja na račun):

– Generirajte novo umjetničko djelo po kliku

–Zaleđa (Sjećate se toga?) Otkrivanje novog ugla Interneta slučajnim pretraživanjem

Da–Image Generation LLMS

– Algoritmi za rješavanje (suradničko filtriranje)

Ponavljajući se zadaci u kojima je kupcu potreban isti/sličan izlaz za različite ulaze– Eseji za dogradnju
– Generirajući teme iz povratnih informacija kupaca
OvisiAko je broj ulaznih i izlaznih kombinacija dovoljno jednostavan, determinirani, sustav temeljen na pravilima i dalje može raditi za vas.

Međutim, ako počnete imati više kombinacija ulaza i izlaza, jer sustav temeljen na pravilima ne može učinkovito skalirati, razmislite o oslanjanju:

– Klasifikatori
–Topično modeliranje

Ali samo ako postoje obrasci za ove ulaze.

Ako uopće nema obrazaca, razmislite o iskorištavanju LLMS-a, ali samo za jednokratne scenarije (jer LLM-ovi nisu tako precizni kao nadzirani modeli).

Ponavljajući se zadaci gdje kupcu trebaju različiti izlazi za različite ulaze – Zapisivanje pitanja o korisničkoj podršci
-Pretraživanje
DaRijetko je naići na primjere gdje možete pružiti različite izlaze za različite ulaze na skali bez ML.

Jednostavno je previše permutacija da bi se implementacija utemeljena na pravilima učinkovito razmjera. Razmotriti:

-llms s generacijom koja je usmjerena na pretraživanje (RAG)
– Drveće stabla za proizvode poput pretraživanja

Neotkrivajući zadaci s različitim izlazimaPregled hotela/restoranaDaPre-llms, ova vrsta scenarija bila je teško postići bez modela koji su bili obučeni za određene zadatke, poput:

–Zarentne neuronske mreže (RNNS)
-Duge kratkoročne memorijske mreže (LSTMS) za predviđanje sljedeće riječi

LLM -ovi su odlično pogodni za ovu vrstu scenarija.

Dno crta: Nemojte koristiti svjetlosni sabl kada bi jednostavan par škara mogao učiniti trik. Procijenite potrebe svog kupca pomoću gornje matrice, uzimajući u obzir troškove implementacije i preciznost proizvodnje, za izgradnju točnih, ekonomičnih proizvoda na skali.

Sharanya Rao je voditeljica proizvoda FinTech grupe. Stajališta izražena u ovom članku su ona autora, a ne nužno i oni iz njihove tvrtke ili organizacije.

Dnevni uvidi u slučajeve poslovne uporabe s VB dnevno

Ako želite impresionirati svog šefa, VB Daily vas je pokrivao. Dajemo vam unutarnju lopaticu o tome što tvrtke rade s generativnim AI, od regulatornih pomaka do praktičnih razmještaja, tako da možete dijeliti uvide za maksimalni ROI.

Pročitajte našu politiku privatnosti

Hvala na pretplati. Pogledajte više VB biltena ovdje.

Došlo je do pogreške.



Web izvor

Povezani sadržaji

  • Walmartova rasprodaja Crnog petka službeno je stigla: pratim svoje omiljene popuste do 60% uživo
  • Kalifornijski čovjek ukrade 10k nintendo switch igara iz knjižnica, sada se suočava s više od velike kasne naknadeKalifornijski čovjek ukrade 10k nintendo switch igara iz knjižnica, sada se suočava s više od velike kasne naknade
  • Sigurnosni istraživački tenk: Što CISO -ovi mogu naučiti od SignalgateaSigurnosni istraživački tenk: Što CISO -ovi mogu naučiti od Signalgatea
  • Wubuntu distribucija Linuxa toliko je slična Windowsu da čak dolazi s Microsoftovim aplikacijamaWubuntu distribucija Linuxa toliko je slična Windowsu da čak dolazi s Microsoftovim aplikacijama
  • Google započinje značajke Blizanca, jer je BEMINI ŽIVOTGoogle započinje značajke Blizanca, jer je BEMINI ŽIVOT
  • HBO Max o tome da postane “agresivan” protiv dijeljenja lozinkeHBO Max o tome da postane “agresivan” protiv dijeljenja lozinke

Previous Article

Zašto se balkonske solarne panele nisu skinule u SAD -u

Next Article

Škotske najudaljenije gradove i sela kako bi dobili nadogradnju gigabita

Posljednje objave

Masivni prekid rada Verizona donosi korisnicima 20 USD kredita

Masivni prekid rada Verizona donosi korisnicima 20 USD kredita

Sve više dokaza koji sugeriraju da se Ubisoft doista sprema najaviti remake Assassin’s Creed 4: Black Flag

Sve više dokaza koji sugeriraju da se Ubisoft doista sprema najaviti remake Assassin’s Creed 4: Black Flag

Teksaški sudac odbacuje drugu tužbu zbog prekida rada CrowdStrikea

Teksaški sudac odbacuje drugu tužbu zbog prekida rada CrowdStrikea

Novosti

  • Masivni prekid rada Verizona donosi korisnicima 20 USD kredita 15. siječnja 2026
  • Sve više dokaza koji sugeriraju da se Ubisoft doista sprema najaviti remake Assassin’s Creed 4: Black Flag 15. siječnja 2026
  • Teksaški sudac odbacuje drugu tužbu zbog prekida rada CrowdStrikea 15. siječnja 2026
  • Z.ai GLM-Image otvorenog koda pobjeđuje Googleov Nano Banana Pro u složenom prikazivanju teksta, ali ne i u estetici 15. siječnja 2026
  • Neuroznanstvenici dešifriraju odugovlačenje: moždani mehanizam objašnjava zašto ljudi ostavljaju određene zadatke za kasnije 15. siječnja 2026
  • Ovaj popularni Bose zvučnik izgubit će softversku podršku 2026. – ali sada ima spas 14. siječnja 2026
  • Google Photos “Ask” pretraga još uvijek ima puno mrzitelja 14. siječnja 2026
  • Battlefield 6, 2. sezona odgođena je za veljaču, ali još sadržaja za 1. sezonu i događaja je na putu 14. siječnja 2026
  • Širokopojasna revolucija u Velikoj Britaniji ne pokazuje znakove usporavanja 14. siječnja 2026
  • Zašto Egnyte nastavlja zapošljavati mlađe inženjere unatoč porastu AI alata za kodiranje 14. siječnja 2026

O nama

Oblak Znanja je blog edukativnog karaktera i namijenjen je svima koji žele unaprijediti svoje znanje iz područja računala i interneta.

Naš cilj je edukacija i pisanje zanimljivih objava kojima ćemo zajedno učiti i informirati se o svijetu informatike.

Na ovom blogu zabranjeno je svako kopiranje sadržaja bez dozvole autora.

Oblak Znanja

Oznake

besplatni powerpoint predlošci društvene mreže excel facebook firefox gmail google+ Google Chrome halloween halloween walpapers internet kartice linkedin profil linux microsoft Mozilla Firefox ms powerpoint oblak znanja office 2007 office savjeti online kupovina pick powerpoint powerpoint predložak powerpoint savjeti rastući niz savjet slike za radnu površinu spremanje datoteka strani jezik tipkovnicke kratice twitter twitter alati uređivanje slika wallpaper clock web preglednik windows windows 7 windows aplikacije windows vista word word 2007 word savjeti youtube savjeti youtube tipkovničke kratice