Oblak Znanja

  • Home
  • Novosti
  • Učionica
    • Informatika 5
    • Informatika 6
    • Informatika 7
    • Informatika 8
    • Logo jezik
    • WordPress
    • Microsoft Office
  • Vodiči
    • Online vodiči
    • Kratki savjeti
    • Korisne aplikacije
    • Društvene mreže
    • Multimedija
    • Zanimljivosti
✕

Snowflake gradi novu inteligenciju koja nadilazi RAG za postavljanje upita i prikupljanje tisuća dokumenata odjednom

Novosti

Snowflake gradi novu inteligenciju koja nadilazi RAG za postavljanje upita i prikupljanje tisuća dokumenata odjednom

Tomšić Damjan 4. studenoga 2025

Enterprise AI ima problem s podacima. Unatoč milijardama ulaganja i sve sposobnijim jezičnim modelima, većina organizacija još uvijek ne može odgovoriti na osnovna analitička pitanja o svojim spremištima dokumenata. Krivac nije kvaliteta modela nego arhitektura: tradicionalna dohvaćanje proširene generacije (RAG) sustavi su dizajnirani za dohvaćanje i sažimanje, a ne za analizu i agregaciju u velikim skupovima dokumenata.

Snowflake se ovim ograničenjima izravno bavi sveobuhvatnom platformskom strategijom najavljenom na svojoj konferenciji BUILD 2025. Tvrtka je predstavila Snowflake Intelligence, agentsku platformu agenta poslovne inteligencije dizajniranu za objedinjavanje strukturirane i nestrukturirane analize podataka, zajedno s poboljšanjima infrastrukture koja obuhvaća integraciju podataka s Openflowkonsolidacija baze podataka sa Snježna pahuljica Postgres i analitiku u stvarnom vremenu s interaktivnim tablicama. Cilj: Ukloniti podatkovne silose i arhitektonska uska grla koja sprječavaju poduzeća u operacionalizaciji umjetne inteligencije u velikim razmjerima.

Ključna inovacija je Agentic Document Analytics, nova mogućnost unutar Snowflake Intelligence koja može analizirati tisuće dokumenata istovremeno. Ovo pomiče poduzeća od osnovnih pretraživanja kao što su "Koja je naša politika poništavanja lozinke?" na složene analitičke upite poput "Pokaži mi broj tjednih spominjanja po području proizvoda u mojim tiketima korisničke podrške za posljednjih šest mjeseci."

Sadržaj objave

  • 1 Usko grlo RAG-a: zašto uzorkovanje ne uspijeva analitici
  • 2 Kako Agentic Document Analytics radi drugačije
  • 3 Usporedba s trenutnim tržišnim pristupima
  • 4 Što to znači za strategiju umjetne inteligencije poduzeća
    • 4.1 Povezani sadržaji

Usko grlo RAG-a: zašto uzorkovanje ne uspijeva analitici

Tradicionalni RAG sustavi rade tako da ugrađuju dokumente u vektorske prikaze, pohranjuju ih u vektorsku bazu podataka i dohvaćaju semantički najsličnije dokumente kada korisnik postavi pitanje.

"Da bi RAG funkcionirao, potrebno je da svi odgovori koje tražite već postoje na neki objavljen način danas," Jeff Hollan, voditelj Cortex AI Agents u Snowflakeu objasnio je za VentureBeat tijekom brifinga za novinare. "Uzorak o kojem razmišljam s RAG-om je da je kao knjižničar, dobijete pitanje i ono vam kaže: ‘Ova knjiga ima odgovor na ovoj određenoj stranici.’"

Međutim, ova se arhitektura u osnovi kvari kada organizacije trebaju izvršiti agregatnu analizu. Ako, na primjer, poduzeće ima 100.000 izvješća i želi identificirati sva izvješća koja govore o određenom poslovnom subjektu i zbrojiti sve prihode o kojima se govori u tim izvješćima, to nije trivijalan zadatak.

"To je mnogo složenija stvar od tradicionalnog RAG-a," rekao je Hollan.

Ovo ograničenje obično prisiljava poduzeća da održavaju zasebne analitičke kanale za strukturirane podatke u skladištima podataka i nestrukturirane podatke u vektorskim bazama podataka ili spremištima dokumenata. Rezultat su silosi podataka i izazovi upravljanja za poduzeća.

Kako Agentic Document Analytics radi drugačije

Snowflakeov pristup ujedinjuje strukturirane i nestrukturirane analize podataka unutar svoje platforme tretirajući dokumente kao izvore podataka koji se mogu postavljati upitima, a ne ciljeve za dohvaćanje. Sustav koristi AI za izdvajanje, strukturiranje i indeksiranje sadržaja dokumenta na načine koji omogućuju analitičke operacije slične SQL-u na tisućama dokumenata.

Sposobnost iskorištava postojeću arhitekturu Snowflakea. Cortex AISQL upravlja raščlanjivanjem i izdvajanjem dokumenata. Interaktivne tablice i skladišta isporučuju performanse upita ispod sekunde na velikim skupovima podataka. Obradom dokumenata unutar iste upravljane podatkovne platforme koja sadrži strukturirane podatke, poduzeća mogu spojiti uvide u dokumente s transakcijskim podacima, evidencijom kupaca i drugim poslovnim informacijama.

"Vrijednost umjetne inteligencije, snaga umjetne inteligencije, produktivnost i razorni potencijal umjetne inteligencije stvoreni su i omogućeni povezivanjem s podacima poduzeća," rekao je Christian Kleinerman, EVP proizvoda u Snowflakeu.

Arhitektura tvrtke drži svu obradu podataka unutar svojih sigurnosnih granica, rješavajući probleme upravljanja koji su usporili usvajanje umjetne inteligencije u poduzećima. Sustav radi s dokumentima iz više izvora. To uključuje PDF-ove u SharePointu, Slack razgovore, Microsoft Teams podatke i Salesforce zapise kroz Snowflakeove mogućnosti integracije bez kopiranja. Ovo eliminira potrebu za izvlačenjem i premještanjem podataka u zasebne sustave za obradu AI.

Usporedba s trenutnim tržišnim pristupima

Ova objava pozicionira Snowflake drugačije od tradicionalnih dobavljača skladišta podataka i startupa koji koriste umjetnu inteligenciju.

Tvrtke kao što je Databricks usredotočile su se na dovođenje AI mogućnosti u lakehouses, ali obično se i dalje oslanjaju na vektorske baze podataka i tradicionalne RAG uzorke za nestrukturirane podatke. OpenAI-jev Assistants API i Anthropicov Claude nude analizu dokumenata, ali su ograničeni veličinama kontekstnog prozora.

Pružatelji vektorskih baza podataka kao što su Pinecone i Weaviate izgradili su poslovanje oko slučajeva korištenja RAG-a, no ponekad se suočavaju s izazovima kada korisnici trebaju analitičke upite umjesto onih koji se temelje na dohvaćanju. Ovi sustavi izvrsni su u pronalaženju relevantnih dokumenata, ali ne mogu lako agregirati informacije u velikim skupovima dokumenata.

Među ključnim slučajevima korištenja visoke vrijednosti koji su prije bili teški s RAG-only arhitekturama koje Snowflow ističe za svoj pristup je analiza korisničke podrške. Umjesto ručnog pregledavanja zahtjeva za podršku, organizacije mogu postavljati upite o uzorcima kroz tisuće interakcija. Pitanja poput "Kojih je 10 najčešćih problema s proizvodima spomenutih u zahtjevima za podršku u ovom kvartalu, raščlanjeno po segmentima korisnika?" postati odgovoran za nekoliko sekundi.

Što to znači za strategiju umjetne inteligencije poduzeća

Za poduzeća koja grade strategije umjetne inteligencije, Agentic Document Analytics predstavlja pomak od "tražiti i dohvaćati" paradigma RAG-a do a "ispitivati ​​i analizirati" paradigma poznatija iz alata poslovne inteligencije.

Umjesto postavljanja zasebnih vektorskih baza podataka i RAG sustava za svaki slučaj upotrebe, poduzeća mogu konsolidirati analitiku dokumenata u svoju postojeću podatkovnu platformu. Time se smanjuje složenost infrastrukture dok se prakse poslovne inteligencije proširuju na nestrukturirane podatke.

Sposobnost također demokratizira pristup. Učiniti analizu dokumenata upitnom putem prirodnog jezika znači da poslovnim korisnicima postaju dostupni uvidi koji su prethodno potrebni timovi za znanost o podacima.

Za poduzeća koja žele biti vodeći u umjetnoj inteligenciji, konkurentska prednost ne dolazi od posjedovanja boljih jezičnih modela, već od analize vlasničkih nestrukturiranih podataka na razini uz strukturirane poslovne podatke. Organizacije koje mogu postavljati upite svom cjelokupnom korpusu dokumenata jednako lako kao što postavljaju upite svom skladištu podataka dobit će uvide koje konkurenti ne mogu lako replicirati.

"AI je danas stvarnost," rekao je Kleinerman. "Imamo mnogo organizacija koje već izvlače vrijednost iz umjetne inteligencije, a ako netko to još uvijek čeka ili sjedi po strani, naš poziv na akciju je da počnemo graditi sada."

Web izvor

Povezani sadržaji

  • Mogu li prijenosni generatori vjetra zamijeniti solarnu energiju? Moj savjet nakon testiranja jednog kod kućeMogu li prijenosni generatori vjetra zamijeniti solarnu energiju? Moj savjet nakon testiranja jednog kod kuće
  • Android OS na WidowsimaInstalirajte Android OS na vaše računalo
  • Dva najbolja alata za uklanjanje nepoželjnog softvera [Malware, Adware, Spyware, Toolbars]Dva najbolja alata za uklanjanje nepoželjnog softvera [Malware, Adware, Spyware, Toolbars]
  • Kako uključiti način privatnog DNS-a na Androidu – i zašto je to obavezno radi sigurnostiKako uključiti način privatnog DNS-a na Androidu – i zašto je to obavezno radi sigurnosti
  • Što je oblak (Cloud)?Što je oblak (Cloud)?
  • Kako stvoriti Linux Bash skriptu – i što možete učiniti s njomKako stvoriti Linux Bash skriptu – i što možete učiniti s njom

Previous Article

Nova vrsta opioida ubija ljude u SAD-u, Europi i Australiji

Next Article

G42 i Cisco proširuju strateško partnerstvo kako bi potaknuli inovacije umjetne inteligencije i rast infrastrukture

Posljednje objave

Amazonov AI Assistant sada je besplatan za sve Prime članove

Amazonov AI Assistant sada je besplatan za sve Prime članove

Objavio Nintendo Partner Direct, hoćemo li konačno čuti datum izlaska Elden Ring Switcha ili više o The Duskbloods?

Objavio Nintendo Partner Direct, hoćemo li konačno čuti datum izlaska Elden Ring Switcha ili više o The Duskbloods?

Gigabit ubrzava u metrou, ruralno UK

Gigabit ubrzava u metrou, ruralno UK

Sadržaj

  • 1 Usko grlo RAG-a: zašto uzorkovanje ne uspijeva analitici
  • 2 Kako Agentic Document Analytics radi drugačije
  • 3 Usporedba s trenutnim tržišnim pristupima
  • 4 Što to znači za strategiju umjetne inteligencije poduzeća

Novosti

  • Amazonov AI Assistant sada je besplatan za sve Prime članove 4. veljače 2026
  • Objavio Nintendo Partner Direct, hoćemo li konačno čuti datum izlaska Elden Ring Switcha ili više o The Duskbloods? 4. veljače 2026
  • Gigabit ubrzava u metrou, ruralno UK 4. veljače 2026
  • Qwen3-Coder-Next nudi vibe koderima snažan open source, ultra-sparse model s 10x većom propusnošću za repo zadatke 4. veljače 2026
  • Rastuće temperature narušavaju zdravlje sna 4. veljače 2026
  • Mjesecima sam se mučio s Hyprlandom, sve dok ga ova distribucija temeljena na Archu nije popravila 4. veljače 2026
  • Kako uključiti način privatnog DNS-a na Androidu – i zašto je to obavezno radi sigurnosti 3. veljače 2026
  • Gdje je ažuriranje Pixela za veljaču? 3. veljače 2026
  • Kako broj igrača opada, Highguard čini zapravo prilično dobar način 5v5 trajnim 3. veljače 2026
  • E& enterprise donosi agentsku umjetnu inteligenciju u MENAT 3. veljače 2026

O nama

Oblak Znanja je blog edukativnog karaktera i namijenjen je svima koji žele unaprijediti svoje znanje iz područja računala i interneta.

Naš cilj je edukacija i pisanje zanimljivih objava kojima ćemo zajedno učiti i informirati se o svijetu informatike.

Na ovom blogu zabranjeno je svako kopiranje sadržaja bez dozvole autora.

Oblak Znanja

Oznake

besplatni powerpoint predlošci društvene mreže excel facebook firefox gmail google+ Google Chrome halloween halloween walpapers internet kartice linkedin profil linux microsoft Mozilla Firefox ms powerpoint oblak znanja office 2007 office savjeti online kupovina pick powerpoint powerpoint predložak powerpoint savjeti rastući niz savjet slike za radnu površinu spremanje datoteka strani jezik tipkovnicke kratice twitter twitter alati uređivanje slika wallpaper clock web preglednik windows windows 7 windows aplikacije windows vista word word 2007 word savjeti youtube savjeti youtube tipkovničke kratice